

iW3658 Application

Typical Application Schematic

Basic Application

Layout Consideration

Issue sharing

Calculate sheet introduction

Typical Application Schematic

Basic Application

Layout Consideration

Issue sharing

Calculate sheet introduction

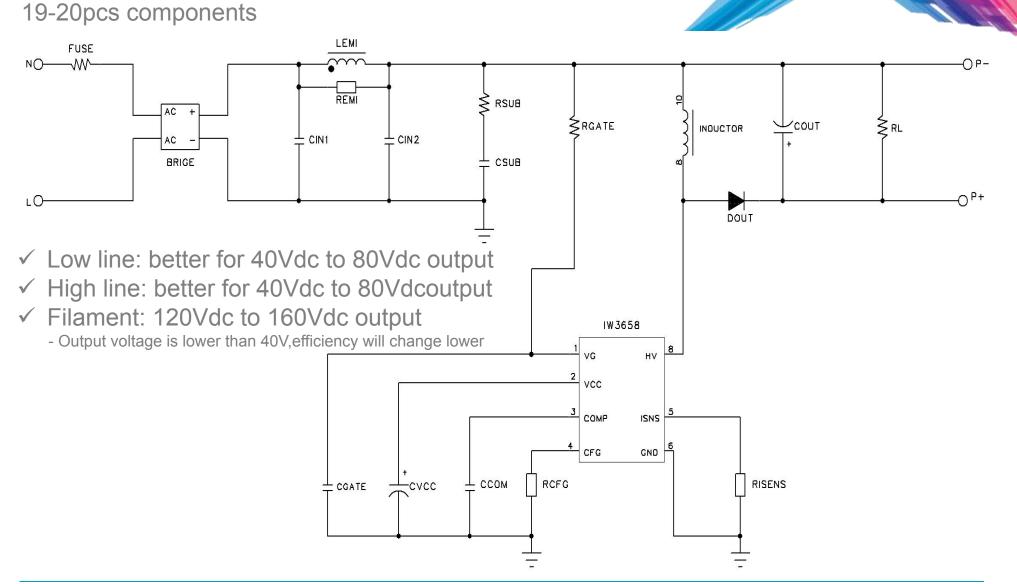
- Low cost TRIAC dimmable driver IC
- ✓ Intergrade HV-Mosfet
 - Easy to layout
 - Achieve to design small size SSL driver
- ✓ Single winding Transformer
 - No auxiliary winding for charging Vcc
- ✓ One differential mode inductor for EMI
 - Only π filter for EMI
- ✓ Effective operation mode
 - No dimmer mode and dimmer mode operation distinguished
 - Fixed Vipk control with max Ton limit for Low PF version
 - Constant Ton control for High PF version
 - No bleeder control
 - better for thermal control

Compare with Mini-fire and Street-fire

ITEM	IC	IW3658	IW3689	IW3688
Pack	age	SOP - 7	SOP-8	SOP - 14
H-V N	losfet	Intergrade	Outside	Outside
Input F	Input Power		<25W	<25W
Ther	mal	Low	High	High
Componente	High Line	20 Pcs	39	41
Components	Low Line	19 Pcs	34	36
EMI	Inductor	1 Pcs	2 Pcs	2 Pcs
	Capacitor	2 Pcs	2 Pcs	2 Pcs
Tapalagy	Buck-boost	\checkmark	\checkmark	
Topology	Buck	\checkmark	×	×

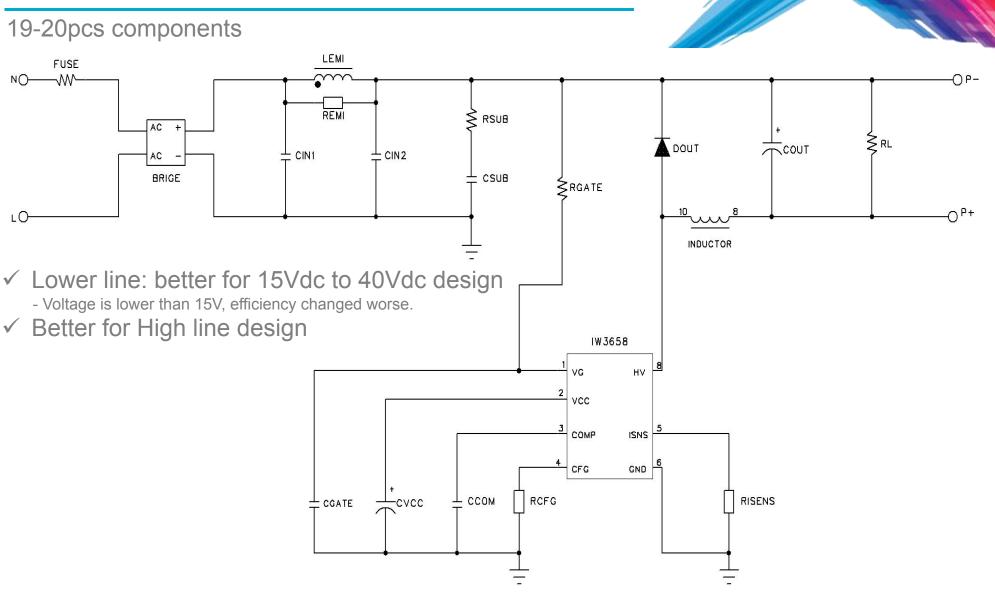
Typical Application Schematic

Basic Application


Layout Consideration

Issue sharing

Calculate sheet introduction



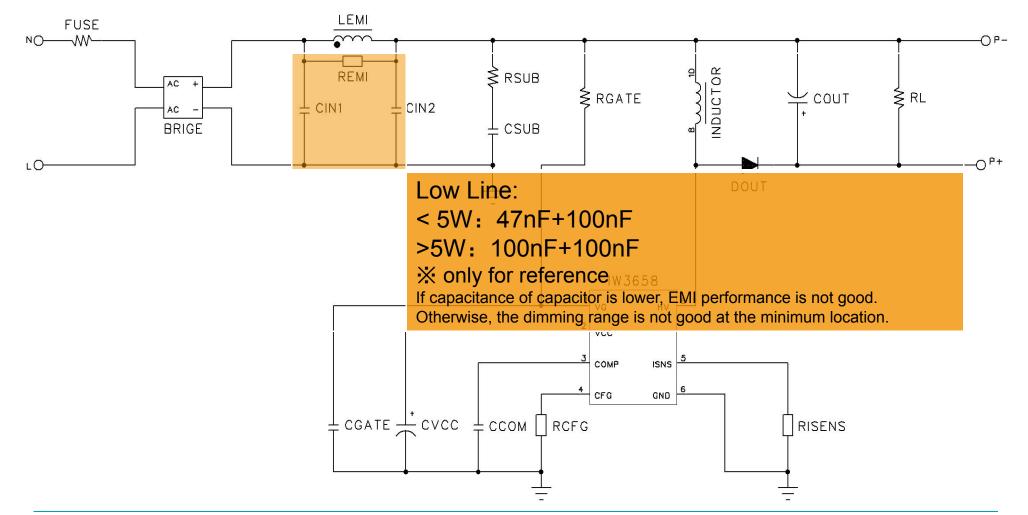
Buck-Boost

Buck

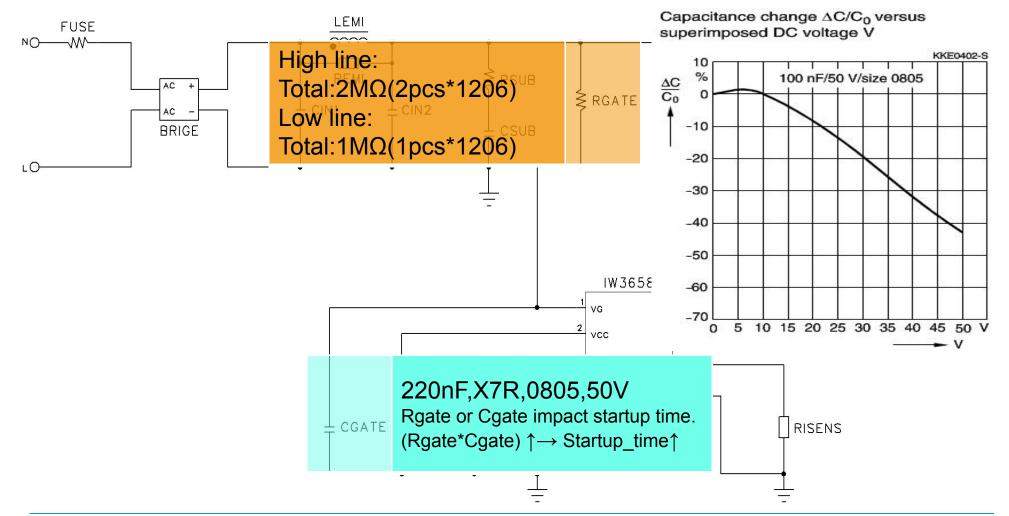
Typical Application Schematic

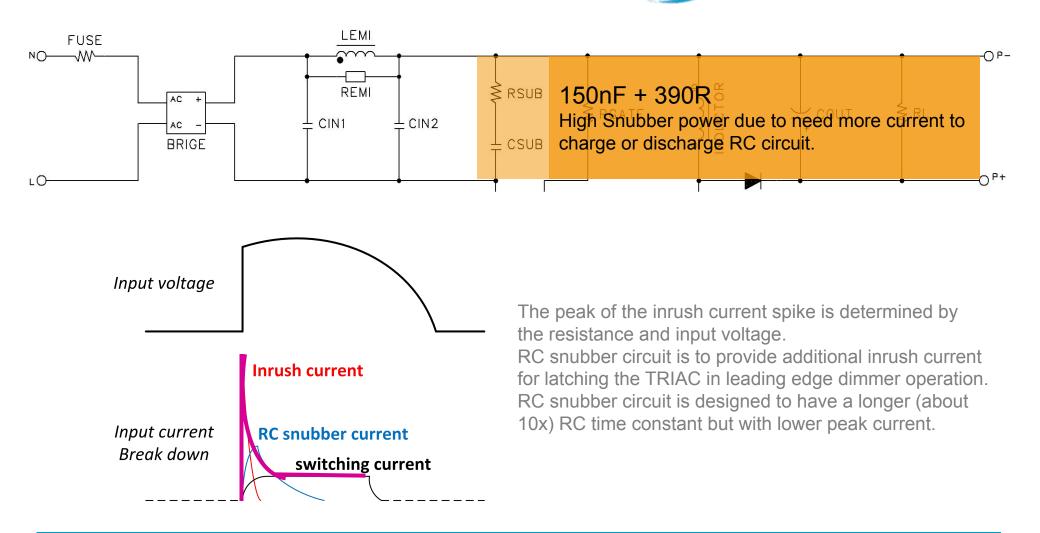
Basic Application

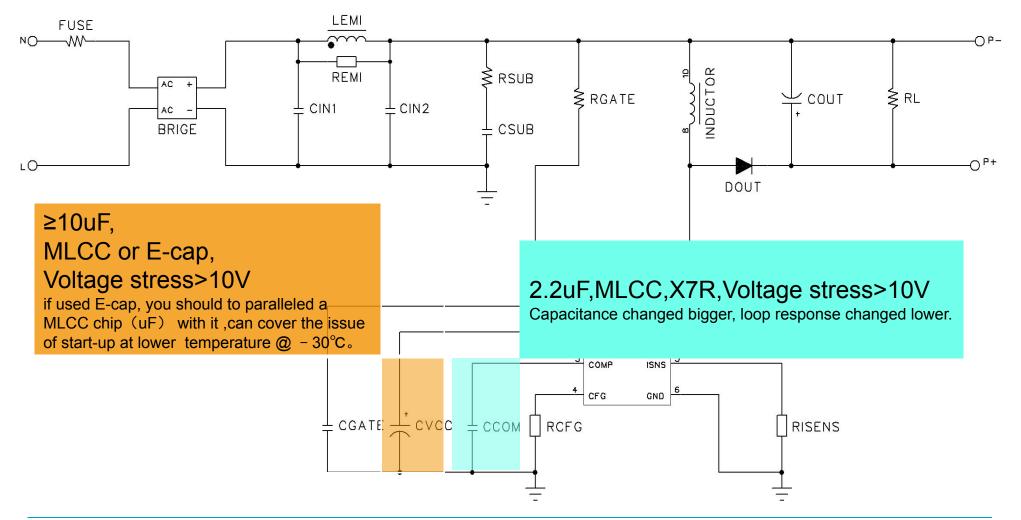
Layout Consideration


Issue sharing

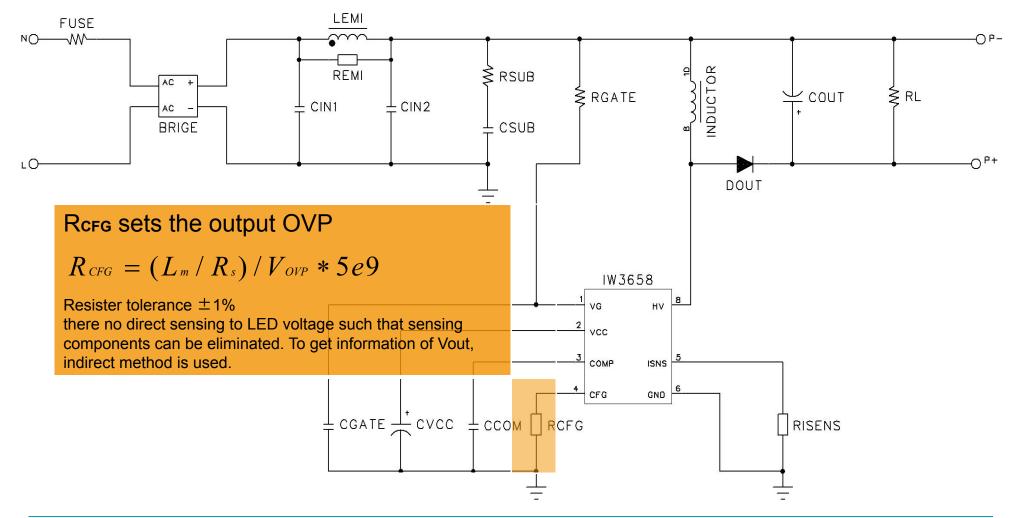
Calculate sheet introduction


Cin Recommendation




Rgate & Cgate Recommendation

RC Recommendation

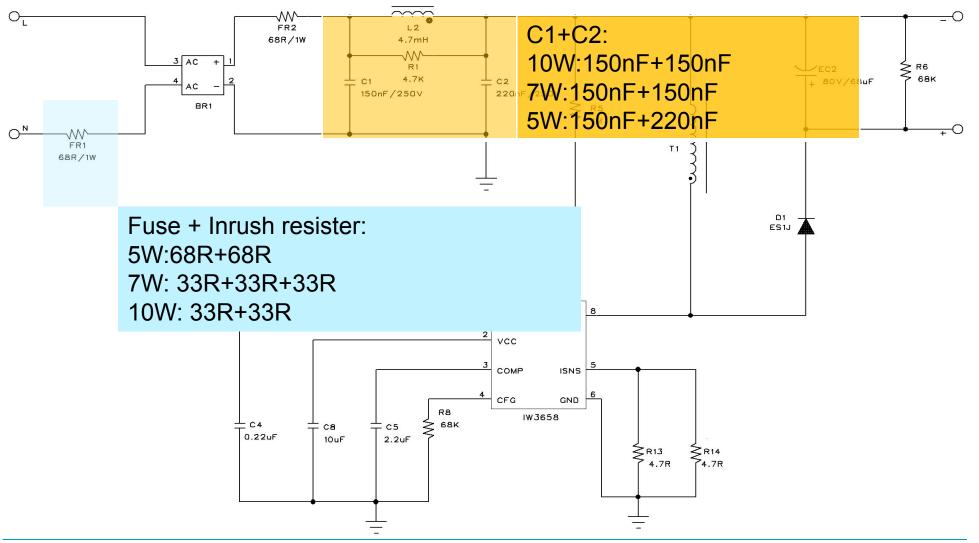

C_{VCC} & **C**_{COM} Recommendation

R_{CFG} Introduction

As a sample of 72V120mA design, according calculate sheet, CFG resister value range is $45.25K\Omega$ -59.17K Ω ,test OVP at these two condition.

So, CFG resister value will impact the OVP point, CFG value ↑, OVP point ↓.

※ with some issue about OVP for AA sample. The point that marked by red is triggered OVP


In fact, when output voltage defined, OVP range had defined,

Vipk-clamp voltage also be defined. Relationship of three parameters as below:

	VIPK_CLAMP	0.96 V	0.80 V	0.66 V
	R _{CFG}	45.25ΚΩ - 59.17ΚΩ	59.17ΚΩ - 85.47ΚΩ	85.47ΚΩ - 128.2ΚΩ
	Lm/Rs=1000u (buck-boost)	65 V - 80 V	45 V - 65 V	30 V - 45 V
NVo	Lm/Rs=700u (buck)	46 V - 56 V	46 V - 32 V	21 V - 32 V

No RC damping

For low line and Power over 5W.

Sample test result with RC and without RC damping (57V75m) (No RC sample C1+C2=220nF+220nF, Fuse + Inrush=136Ω)

Input voltage	Input I (V	Power V)	Р	F		ut A)	۷o (۱	out /)	Output (V			iency %)
(V)	WITH	NO	WITH	NO	WITH	NO	WITH	NO	WITH	NO	WITH	NO
90	4.35	4.46	0.949	0.945	63.92	64.2	55.4	58	3.54	3.72	83.49	81.41
95	4.52	4.61	0.938	0.935	66.41	66.55	55.6	58.1	3.69	3.87	83.87	81.69
100	4.67	4.75	0.928	0.925	68.76	68.71	55.8	58.2	3.84	4	84.19	82.16
105	4.81	4.89	0.918	0.915	70.97	70.76	56	58.3	3.97	4.13	84.36	82.63
110	4.94	4.89	0.908	0.902	73.03	71.12	56.1	58.3	4.1	4.15	84.79	82.93
115	4.98	4.88	0.894	0.887	73.94	71.25	56.2	58.3	4.16	4.15	85.12	83.45
120	4.97	4.87	0.879	0.874	74.04	71.4	56.2	58.2	4.16	4.16	85.33	83.72
125	4.95	4.87	0.864	0.861	74.18	71.53	56.2	58.2	4.17	4.16	85.48	84.22
132	4.93	4.87	0.844	0.843	74.33	71.75	56.2	58.2	4.18	4.18	85.75	84.73

Efficiency changed lower 1~2%.

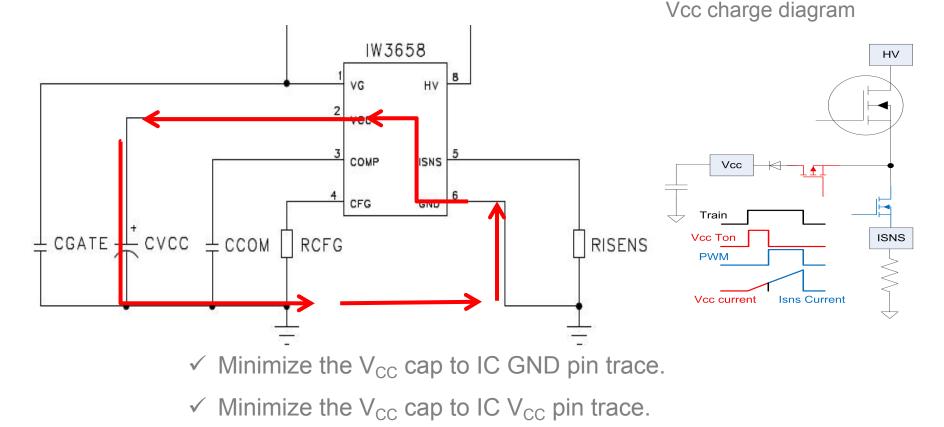
Dimming performance(57V75mA)

With	out RC d	amping									
1	LEVITON	TRIMATRON	6681	LE	74.34	99.79%	6.5	8.72%	28	37.54%	
2	LUTRON	SKYLARK	CT-600	LE	65.75	88.26%	3.7	4.97%	3.7	4.96%	
3	LEVITON	SureSlide	6633	LE	74.32	99.76%	2.6	3.49%	2.6	3.49%	shimmer at minimum location
4	LUTRON	LUMEA	LG-600	LE	66.6	89.40%	2.9	3.89%	2.9	3.89%	
5	LUTRON	SKYLARK	S-600	LE	67	89.93%	1.2	1.61%	3	4.02%	
6	LEVITON	TRIMATRON	6683	LE	74.33	99.77%	0	0.00%	24	32.18%	shimmer at minimum location
7	LEVITON	SureSlide	6631	LE	70.4	94.50%	1	1.34%	7	9.39%	shimmer at minimum location
8	LUTRON	GLYDER	GL-600	LE	72.3	97.05%	3.6	4.83%	3.6	4.83%	
9	LEVITON	TRIMATRON	6602	LE	74.32	99.76%	0	0.00%	23.2	31.11%	shimmer at minimum location
With	RC dam	ping									
1	LEVITON	TRIMATRON	6681	LE	75.45	100.00%	5.38	7.13%	35	46.39%	
2	LUTRON	SKYLARK	CT-600	LE	67.4	89.33%	4.2	5.57%	4.2	5.57%	
3	LEVITON	SureSlide	6633	LE	75.35	99.87%	3	3.98%	3	3.98%	
4	LUTRON	LUMEA	LG-600	LE	68.1	90.26%	3.56	4.72%	3.56	4.72%	
5	LUTRON	SKYLARK	S-600	LE	68.34	90.58%	1.42	1.88%	9	11.93%	
6	LEVITON	TRIMATRON	6683	LE	75.4	99.93%	0	0.00%	29	38.44%	shimmer at minimum location
7	LEVITON	SureSlide	6631	LE	71.88	95.27%	1.1	1.46%	14	18.56%	shimmer at minimum location
8	LUTRON	GLYDER	GL-600	LE	73.85	97.88%	3.94	5.22%	9	11.93%	
9	LEVITON	TRIMATRON	6602	LE	75.4	99.93%	0	0.00%	28	37.11%	shimmer at minimum location

Dimming performance changed worse.

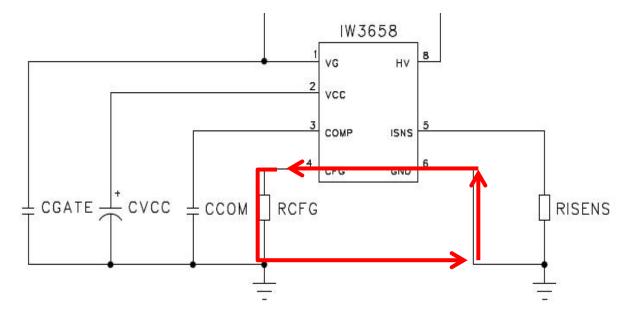
Typical Application Schematic

Basic Application


Layout Consideration

Issue sharing

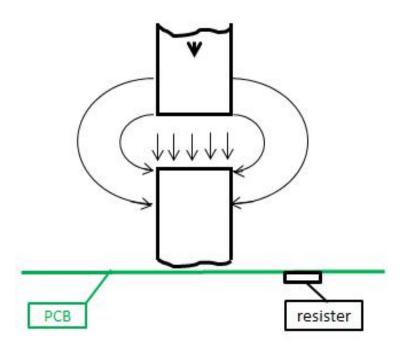
Calculate sheet introduction


Vcc loop

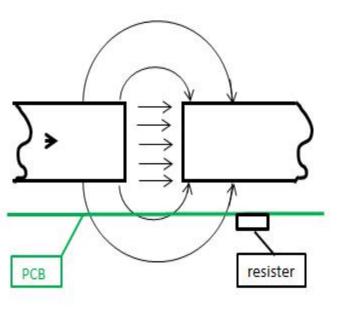
In Sunstone, source-switching charging Vcc is used to supply Icc. The Ton charge circuit is same as iW3688 and IW3689.

CFG Loop

In Sunstone, there no direct sensing to LED voltage such that sensing components can be eliminated. To get information of Vout, indirect method is used.


 $\checkmark\,$ Minimize the CFG resister to IC GND pin trace.

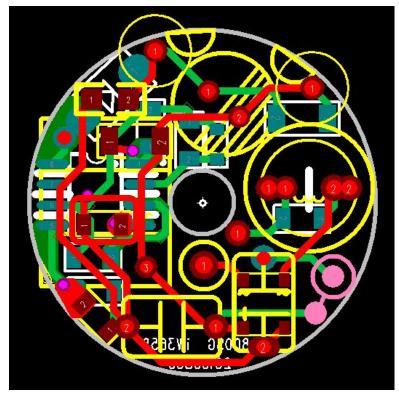
- ✓ Minimize the CFG resister to IC CFG pin trace.
- ✓ Keep far away CFG resister from transformer.
- ✓ Used Vertical transformer better than horizontal.



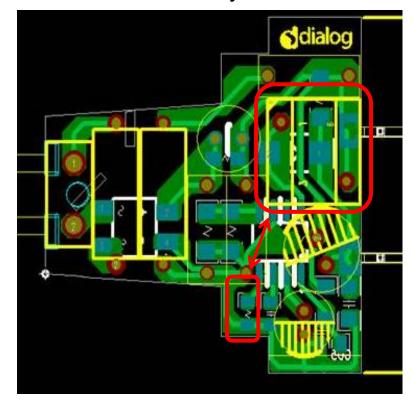
Electromagnetic interference impacted CFG sampling

Vertical transformer

Horizontal transformer



% the current across CFG resister with only a few uA.


PCB layout for CFG loop

Bad layout

CFG resister at bottom of transformer with hole

Good layout

CFG resister far away from transformer

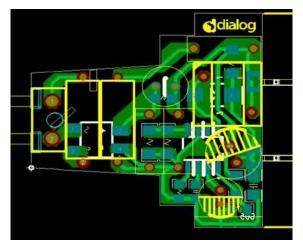
Typical Application Schematic

Basic Application

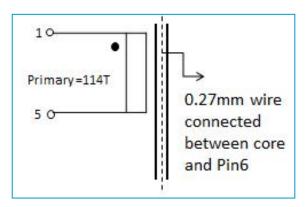
Layout Consideration

Issue sharing

Calculate sheet introduction



OVP


OVP out of control had mentioned, due to CFG Pin is very sensitive, easy to be interrupted by Layout and electromagnetic.

Solution :

- ✓ PCB layout
 - * Minimize the CFG resister to IC GND pin trace.
 - * Minimize the CFG resister to IC CFG pin trace.
 - * Keep far away CFG resister from transformer.
 - * Used Vertical transformer better than horizontal.

 $\checkmark\,$ Add shielding for transformer, connected it to Ground

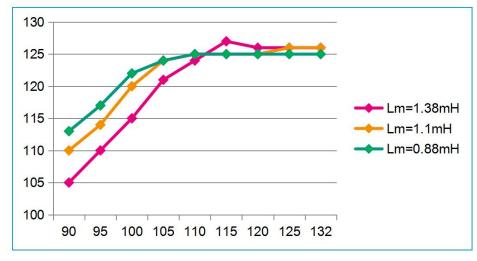
Line regulation

At the dimmer condition, customer feedback output current cannot achieve 90% output current.

N0.	Make	Serial Number	Туре	Max lout(mA)	Max lout Percentage	Min lout(mA)	Min lout Percentage
1	LUTRON	ANLV-600P	LE	109.81	87.85%	0.34	0.27%
2	LUTRON	LGCL-153PL	LE	109.35	87.48%	0.34	0.27%
3	COOPER	AIM06	LE	112.44	89.95%	7.11	5.69%
4	LUTRON	MACL-153M	LE	102.74	82.19%	12.16	9.73%
5	COOPER	T1306		97.15	77.72%	15.66	12.53%
6	LUTRON	CT-600	LE	110.39	88.31%	6.04	4.83%
7	LEVITON	SCL-153	LE	109.14	87.31%	6.90	5.52%
8	LUTRON	CTCL-153PD	LE	109.29	87.43%	30.96	24.77%
9	LUTRON	TGCL-153P	LE	111.59	89.27%	9.64	7.71%
10	LUTRON	NVLV-600P	LE	114.59	91.67%	16.91	13.53%
11	HUNTER	27182	TE	108.10	86.48%	12.11	9.69%
12	LUTRON	NTELV-300	TE	111.89	89.51%	19.00	15.20%
13	LEVITON	6842	LE	120.60	96.48%	0.00	0.00%

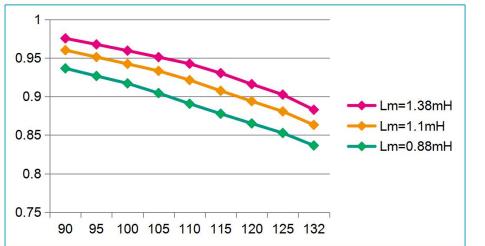
Solution:

✓ changed Lm lower, lead Ton higher

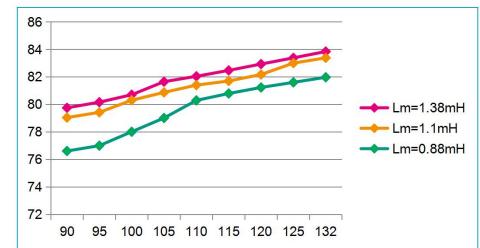

Line regulation

Adjust the value of (Lm/Rs) to test sample 72V125mA, test result as below:

Lm CFG	Input Voltage (Vac)	Input power (W)	PF	lout (mA)	Vout (V)	Output power (W)	Efficiency (%)
	90	9.48	0.9755	105	72	7.56	79.75
	95	9.88	0.9677	110	72	7.92	80.16
	100	10.26	0.9596	115	72	8.28	80.70
CFG=50K	105	10.67	0.9512	121	72	8.712	81.65
Lm=1.38mH	110	10.97	0.9426	125	72	9	82.04
(Lm/Rs=1000)	115	11	0.9304	126	72	9.072	82.47
	120	10.94	0.9161	126	72	9.072	82.93
	125	10.88	0.9025	126	72	9.072	83.38
	132	10.82	0.8829	126	72	9.072	83.84
	90	10.02	0.9602	110	72	7.92	79.04
	95	10.4	0.9513	115	72	8.28	79.62
	100	10.74	0.9424	120	72	8.64	80.45
CFG=43K	105	11.04	0.9333	124	72	8.928	80.87
Lm=1.1mH	110	11.12	0.9214	125	72	9	80.94
(Lm/Rs=800)	115	11.04	0.9075	125	72	9	81.52
	120	10.98	0.894	125	72	9	81.97
	125	10.93	0.8807	126	72	9.072	83.00
	132	10.88	0.8632	126	72	9.072	83.38
	90	10.62	0.9366	113	72	8.136	76.61
	95	10.94	0.9267	117	72	8.424	77.00
CEC-201/	100	11.26	0.9171	122	72	8.784	78.01
CFG=30K	105	11.3	0.9045	124	72	8.928	79.01
Lm=0.88mH	110	11.21	0.8907	125	72	9	80.29
(Lm/Rs=600)	115	11.14	0.8777	125	72	9	80.79
(LIII/RS=000)	120	11.08	0.8651	125	72	9	81.23
[125	11.03	0.8527	125	72	9	81.60
	132	10.98	0.8365	125	72	9	81.97

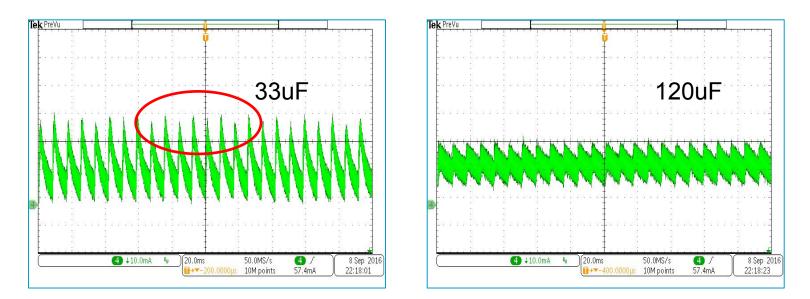

Line regulation

Line regulation Vs (Lm/Rs)



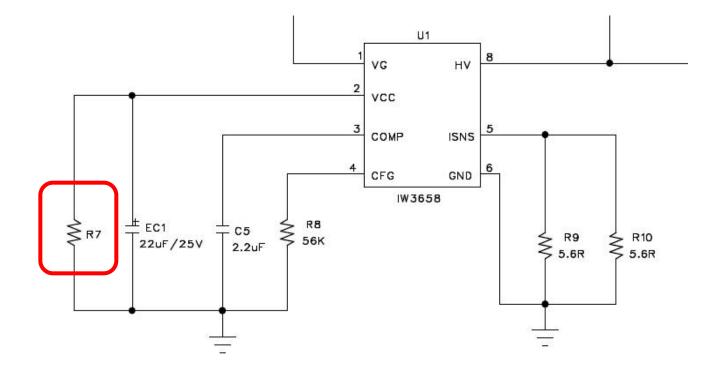
PF Vs (Lm/Rs)

If you changed Lm lower, Line regulation changed better; Efficiency changed lower; PF changed worse.

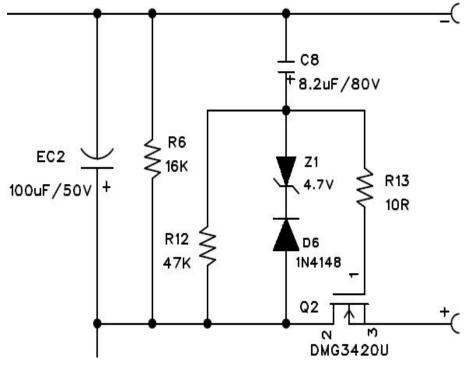

Efficiency Vs (Lm/Rs)

Most of dimmer is asymmetric at the minimum location, different from IW3689 and IW3688 can worked through automatic compensation of phase cut, Sunstone without this function at full process.

Solution:

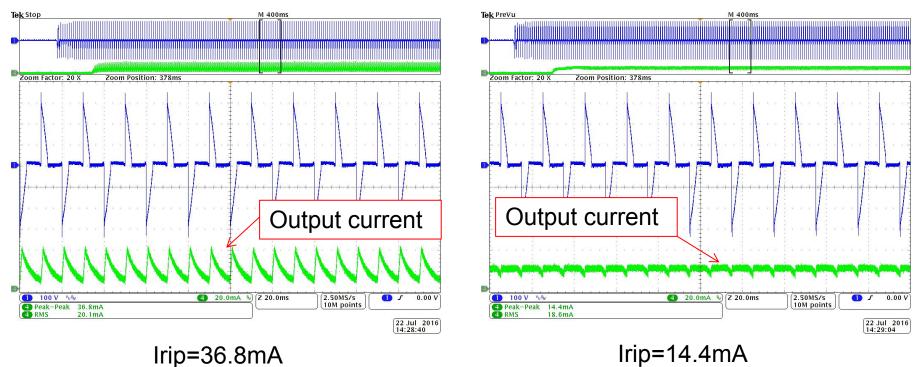

✓ Add capacitance of output capacitor.

*Test sample at the same location of dimmer, only changed capacitance of output capacitor.


✓ Add bypass resister for Vcc capacitor

Add bypass resister for Vcc capacitor, to discharge at the minimum location to turn off the LED system. This solution will impact dimming range at minimum location.

Add activity clamp circuit for output
Control MOS works in the constant current area.


- C8 and R12 integral filter circuit, eliminating the power frequency voltage ripple
- D6 and Z1 play a role for fast charging C8, while D6 prevent C8 through the Z1 discharge, Z1 to prevent the C8 was over charging damage MOSFET
- R13 with the role to eliminate resonant

Compare clamp circuit with no clamp circuit

Without clamp circuit

DFMEA

DFMEA test result

Con	nponent	Fault Mode	lin (mA)	Pin (W)	PF	Vo (V)	lo (mA)	Circuit Fault Effect	Effect to End-User
Vec	capacitor	short	3.3	0.21	0.52	0	0	no Vcc voltage	no output
VCC	capacitor	open	12.3	1.03	0.65	16.1	0	no Vcc voltage	no output
Compone	ation capacitor	short	10	0.7	0.55	0	0	lose Vipk reference voltage	no output
Compense		open	62.7	7.3	0.97	68.6	94	no comp capacitor, Vipk turn low and less lout	no effect
CEG	i resister	short	6	0.2	0.31	18.6	0	output voltage couldn't set up	no output
	resister	open	18	0.69	0.32	59.3	6	OVP	shimmer
leone	e resistor	short	0	0	0	0	0	FR1 opens, chip failure	no output
136113	6 16313101	open	11	0.3	0.2	50.9	0	OVP turn lower than output	no output
	Pin1 Isns	open	5.4	0.2	0.33	6	0	no switch loop	no output
	Pin1 Isns	short with pin2	72.9	0.3	0.34	0	0	FR1 opens, chip failure	no output
	Pin2 GND	open	0	0	0	0	0	FR1 opens, chip failure	no output
	Pin4 HV	open	0	0	0	0	0	no switch loop	no output
	Pin5 VG	open	0	0	0	0	0	no Vg voltage	no output
IW3658	Pin5 VG	short with pin6	0	0	0	0	0	Vg voltage cann't charge to MOS's Vth	no output
	Pin6 Vcc	open	3.3	0.2	0.52	0	0	no Vcc voltage	no output
	Pin1 IsnsSPin2 GNDPin4 HVPin5 VGPin5 VGIW3658Pin5 VGPin6 VccPin6 VccPin6 VccSPin7 compPin7 comp	short with pin7	3.4	0.2	0.53	0	0	Vcc pull down by Comp to ULP	no output
		open	61	7.1	0.97	91	68.5	no comp capacitor, Vipk turn low and less lout	no effect
		short with pin8	5.2	0.2	0.36	18	0	output voltage couldn't set up	no output
	Pin8 CFG	open	18	0.69	0.32	59.3	6	OVP	shimmer

Typical Application Schematic

Basic Application

Layout Consideration

Issue sharing

Calculate sheet introduction

Calculate Sheet introducetion

Step 1 : Choose input voltage 、 output voltage and current

			客户	应用设计规	見格		
详细名称	简称	単位	最小	典型	最大	备注	
输入规格高低压,地区	Region	N/A	北美	,日本: 10	0-120V	请选择应用范围	Input voltage
AC输入RMS电压	VAC	V	90	120	138	推荐浮动范围 +- 15%	output voltage
AC输入频率	fAC	Hz	57	60	63	提待任初犯国 +- 3Hz	output current
LED电压范围	Vout	V	45	50	55	支持25V到80V之间	
LED设计电流	lout	A		0.12			
輸出功率	Pout	V	5.40	6.00	6.60	PASS	
输入功率	Pin	V	6.35	7.06	7.76	假定效率为85%	
推荐使用的3658型号	PN	Ni/4		TBD			Choose buck or
推荐使用的拓扑结构	Topology	N/A	BU	CK或BUCK-B	OOST	230W推荐Buck boost, IZUV高输出电压用Buck-boost	Buck-boost
选择使用的拓扑结构	Topology act	N/4		BUCK-BOOST		PASS	
内部基准电压	Viref	۷		0.35			
推荐电感量llsns电阻比	Lm/Rs	u/ohm	800	1000	1200]
实际电感量/lsns电阻比	Lm/Rs	ulohm		1000			
					से अनेत्र एक १९ २७		Choose "1000"
			K-BOOST或I				010030 1000
详细名称		单位	最小	典型	最大	备注	_
电感应压器原副边圈比	Ntr	N/A	C	1.00	0.000000	3658使用简单电感	
主电感量	Lm	uH	1316	1385	1455	需要控制在+-5%以内	
电感/变压器的有效磁芯面积 (Ae)	Ae	mm2	8	16.1		参照磁芯的说明书	
电感/变压器的最大磁通密度 (Bmax) Bmax	mT	C.	340	0	参照磁芯的说明书,在100c下的最大磁通密度	
电感应压器原边的函数	Np	turn	121	175	3	PASS	
电感使压器副边的函数	Ns	turn	0	175	10		
带调光器时Isns脚电压	Visns	V		0.630			
带调光器时电感原边峰值电流	lpk_dim	A			0.455	and the second	
电感最大磁通量密度	Bmax_dim	mT	8	8	235	请确认电影不会饱和,如可能饱和,增加电影圈数	

Calculate Sheet introduction

Step 2 : Choose CFG resister

			系	统工作参数			
最长Ton时间	Ton(max)	uS		5. 	9		
最长Toff时间	Toff(max)	uS			400	当输出电压太低,IC无法检测到Valley时	
AC顶点开关频率	Fsw	kHz	47	59		最低频率出现在词光时	
输出开路OVP电压	Vovp	٧	59	68	76		
输出短路功耗	Pshort	W		0.483			
Anna ann an an ann an ann an ann an ann an a			非功	, 率元件选择	2		
详细名称	简称	单位	最小	典型	最大	备注	
lsense电阻	Risns	ohm		1.39		使用1%电阻	
CFG电阻揣荐值	Refg	k ohm	66.7	74.1	81.5	使用1%电阻。会影响OVP结度	r
实际CFG电阻	Rcfg_act	k ohm		74		使用1%电阻。会影响OVP精度	– r
Gate上拉电阻	Rgate	kohm		750	den nov	使用5%的电阻	
Gate电容	Cgate	uF	0.15	0.22	0.33	使用X7R 0805电容	
Comp电容	Ccomp	uF		2.2		使用X7R 0805电容	
假负载电阻	RL	k ohm	35.7	37.6	39.5	使用5%的电阻	
			Vcc	l容和Vcc负i	载		
详细名称	简称	単位	最小	典型	最大	る注	
Voc电容	CVcc	uF	22	22	33	使用电解电容,无须0.1uF瓷片电容。 10V或以上	
Vee负载	RVcc	k ohm		TBD		避免buck-boost最底端微闪	
			功率	◎元件的选择	2		
详细名称	简称	単位	最小	典型	最大	备注	
输出二极管耐压	Vdiode	V		600		ES1J	
电标耐压	Vbridge	V	600		1000	MB6S	

Choose the resister value in the range

Calculate Sheet introduce

Step 3 : transformer parameters defined

		BUCK	-BOOST或F	LYBACK电感	/变压器设	it i	
详细名称	简称	单位	最小	典型	最大	备注	
电感/变压器原剖边圈比	Ntr	N/A		1.00		3658使用简单电感	
主电感量	Lm	uH	1316	1385	1455	需要控制在+-5%以内	
电感/变压器的有效磁芯面积 (Ae)	Ae	mm2		16.1		參照磁芯的说明书	
电感l变压器的最大磁通密度 (Bmax)	Bmax	mT		340		· · · · · · · · · · · · · · · · · · ·	
电感使压器原边的函数	Np	turn	142	175		_PASS	
电感使压器副边的函数	Ns	turn		175			
带调光器时Isns脚电压	Visns	V		0.740		2	
带调光器时电感原边峰值电流	lpk_dim	A		· · · · · · · · · · · · · · · · · · ·	0.534		
电感最大磁通量密度	Bmax_dim	mT		8	276	诸确认电感不会饱和。如可能饱和。增加电感圈数	

Turn number, inductance

			系	统工作参数			
最长Ton时间	Ton(max)	uS		8	9	- C	
最长Toff时间	Toff(max)	uS		8	400	当输出电压太低,IC无法检测到Valley时	
AC顶点开关频率	Fsw	kHz	47	59		最低频率出现在词光时	
输出开路OVP电压	Vovp	V	59	68	76		
输出短路功耗	Pshort	¥		0.483	1980		

Other parameters you can refer the sheet directly when you finished these 3 steps.

- \checkmark Application is simply, easy to do design.
- ✓ CFG, Output voltage and Clamp voltage relationship can help to review your design.
- No RC damping application impacted efficiency and dimming performance.
- ✓ Pay more attention about PCB layout.

The Power To Be...

...connected

